On Mordell-tornheim Sums and Multiple Zeta Values

نویسندگان

  • DAVID M. BRADLEY
  • XIA ZHOU
چکیده

RÉSUMÉ. Nous prouvons que toute somme de Mordell-Tornheim avec des arguments entiers positifs peut s’écrire comme une combinaison linéaire rationnelle de valeurs prises par des fonctions multi-zêta ayant le même poids et la même profondeur. Selon un résultat de Tsumura, il s’ensuit que toute somme de Mordell-Tornheim ayant un poids et une profondeur de parité différente peut s’exprimer comme une combinaison linéaire rationnelle de produits de valeurs prises par des fonctions multi-zêta de profondeur plus petite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation and structure of character polylogarithms with applications to character Mordell-Tornheim-Witten sums

This paper extends tools developed in [10, 8] to study character polylogarithms. These objects are used to compute Mordell-Tornheim-Witten character sums and to explore their connections with multiple-zeta values (MZVs) and with their character analogues [17].

متن کامل

Reducibility of Signed Cyclic Sums of Mordell-tornheim Zeta and L-values

Matsumoto et al. define the Mordell-Tornheim L-functions of depth k by LMT(s1, . . . , sk+1;χ1, . . . , χk+1) := ∞ ∑

متن کامل

Generalized Log Sine Integrals and the Mordell-tornheim Zeta Values

We introduce certain integrals of a product of the Bernoulli polynomials and logarithms of Milnor’s multiple sine functions. It is shown that all the integrals are expressed by the Mordell-Tornheim zeta values at positive integers and that the converse is also true. Moreover, we apply the theory of the integral to obtain various new results for the Mordell-Tornheim zeta values.

متن کامل

Computation and experimental evaluation of Mordell–Tornheim–Witten sum derivatives

In previous work the present authors and others have studied Mordell-Tornheim-Witten sums and their connections with multiple-zeta values. In this note we describe the numerical computation of derivatives at zero of a specialization originating in a preprint by Romik, and the experimental evaluation of these numerical values in terms of well-known constants.

متن کامل

On Mordell-tornheim Zeta Values

We prove that the Mordell-Tornheim zeta value of depth r can be expressed as a rational linear combination of products of the Mordell-Tornheim zeta values of lower depth than r when r and its weight are of different parity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010